Scientific Reach of Future Neutrino Oscillations Exps.

Parameter	T2K	T2HK	Reactor	Nova	Nova2	VLBNO .
Δm_{32}^{2}	\checkmark	✓	_	✓	✓	✓
$\sin^2(2\theta_{23})$	\checkmark	\checkmark	_	\checkmark	\checkmark	\checkmark
$\sin^2(2\theta_{13})^a$	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
$\Delta m_{21}^2 \sin(2\theta_{12})^b$	-	-		-	-	12%
sign of $(\Delta m_{32}^{2})^{c}$	Nova	_	<u>-</u>	T2K	yes	yes
measure $\delta_{ extsf{CP}}^{} extsf{d}}$		Nova	₋ Combi		T2HK	±13°
N-decay improv.	x 1	x20	····measure	emen <u>t</u>		x8
Detector (KTons)	50	1000	20	30	30	400
Beam Power (MW)	0.74	4.0	14000	0.65	2.0	1.5
Baseline (km)	295 ^e	295 ^e	1	810 e	810 e	>2500
Detector Cost (\$M)	exists	~\$\$\$	20	165	+ ???	\$\$
Beam Cost (\$M) -	exists	\$\$	exists	\$	\$\$\$	400

 $[^]a$ detection of $\nu_{u} \rightarrow \nu_{e}$, upper limit on or determination of $sin^2(2\theta_{13})$

^e beam is 'off-axis' from 0-degree target direction

^b detection of $v_{\mu} \rightarrow v_{e}$ appearance, even if $\sin^{2}(2\theta_{13}) = 0$; determine θ_{23} angle ambiguity

 $^{^{}c}$ detection of the matter enhancement effect over the entire δ_{CP} angle range

 $^{^{\}text{d}}$ measure the CP-violation phase δ_{CP} in the lepton sector; Nova2 depends on T2HK

Comments on Neutrino Oscillations Experiments

- All parameters of neutrino oscillation can be measured in <u>one</u> experiment
 - a Very Long Baseline Neutrino Oscillation (VLBNO) at >2000 km
 - the cost of VLBNO is comparable to (or less than) competing proposals
- the mass of the VLBNO target enables a powerful *Nucleon Decay* search
- Use of a broadband neutrino beam at very long distances is the key
- The CP-violation parameter is the most difficult parameter to determine
 - matter effects interact with CP-violation effects
 - the CP-violation phase δ_{CP} has distinct effects over the full 360° range
- Off-axis beam method requires multiple distances and detectors
 - all experiments will require of order 10 Snomass years of running
 - each proposed detector will achieve good statistics for most parameters
- All measured oscillation parameters will be limited to ~1% precision by systematic errors except $\sin^2(2\theta_{23})$

Comments on Neutrino Oscillations Experiments

• A Figure of Merit (FOM) for oscillation experiments is given by:

FOM =
$$\left[\sum_{i} (1/\sigma_{i})\right]$$
 / [Facility Cost + 5 years Operations]

For the experiments discussed, the computed FOMs are:

<u>Facility</u>	Figure of Merit .
T2K	1.9
T2K2	0.3
Reactor	4.0
Nova	1.3
Nova2	0.6
VLBNO	0.6

